2

3

4

5

6

7

9

10 11

12

13 14

15

16 17

Chapter 2B: Mercury Monitoring, Research and Environmental Assessment in South Florida

Donald M. Axelrad, Thomas D. Atkeson, Curtis D. Pollman, and Ted Lange

SUMMARY

Mercury remains an important water quality concern in the Everglades. As such, the Florida Department of Environmental Protection (FDEP) and the South Florida Water Management District (District or SFWMD) continue to lead the South Florida Mercury Science Program (SFMSP)¹ to improve understanding of the sources, transformations, toxicity, and fate of mercury in the Everglades. The SFMSP seeks to provide scientific information on environmental cycling of mercury at local, regional, and global levels to better support decision making in South Florida. General information on the nature of the environmental mercury cycle has been presented in previous Everglades Consolidated Reports. This chapter in the 2006 South Florida Environmental Report – Volume I serves to update the previously reported findings (SFWMD 1999-2005), with supporting data and other technical information on mercury provided in the appendices to this chapter.²

DRAFT 2B-1 9/9/2005

¹ This partnership of federal, state, and local interests includes the FDEP, the District, the U.S. Environmental Protection Agency Office of Research and Development and Region 4, the Florida Fish and Wildlife Conservation Commission, and the U.S. Geological Survey. Other collaborators associated with the SFMSP are the U.S. Fish and Wildlife Service, U.S. Park Service, U.S. Army Corps of Engineers (USACE), University of Florida, Florida International University, University of Miami, University of Michigan, University of Wisconsin, Texas A & M University, Louisiana State University, the Smithsonian Institution, Florida Electric Power Coordinating Group, and the National Oceanic and Atmospheric Administration.

² Appendices 2B-1 2B-2, and 4-4 of the 2006 South Florida Environmental Report – Volume I provide additional details to meet the Everglades Forever Act (EFA) requirement that the District and the FDEP shall annually issue a peer-reviewed report regarding the mercury research and monitoring program that summarizes all data and findings. Appendices 2B-1 and 4-4 of this volume meets the reporting requirements of the EFA, as well as specific permits issued by the FDEP to the District. Additional detailed scientific information can be found in the specific chapters on mercury monitoring and assessment presented in the 1999 Everglades Interim Report and 2000–2004 Everglades Consolidated Reports and the 2005 South Florida Environmental Report.

- 18 Previous findings from this collaborative effort on mercury include the following:
 - Atmospheric deposition accounts for greater than 95 percent of the external load of mercury (Hg) to the Everglades.
 - Atmospherically deposited inorganic mercury is converted to methylmercury (MeHg), a highly toxic form of mercury, by naturally occurring, sulfate-reducing bacteria (SRB). Sites of mercury methylation include soil surface "flocs" and to a lesser extent, periphyton mats, where inorganic mercury is converted to MeHg over a period of hours to days.
 - A higher fraction of newly atmospherically-deposited Hg is methylated in surface soils than is native (old) Hg, suggesting that Hg newly-deposited to the Everglades surface is more bioavailable for methylation than previously deposited pools.
 - MeHg production is highly influenced by the rate of supply of atmospherically derived mercury.
 - The effect of sulfur on methylation is determined by the balance between sulfate and sulfide; methylation is generally highest at 2-10 mg/L sulfate in Everglades surface waters where porewater sulfide concentrations are moderate (5 to 150 ppb or ug/L). Sulfur contamination as an important (perhaps dominant) control on Hg methylation in the ecosystem.
 - The Everglades Agricultural Area (EAA) is an important source of sulfur to the Everglades.
 - Dissolved organic carbon affects methylation by holding Hg in solution. It also affects bioaccumulation by limiting bioavailability of MeHg.
 - Long-term phosphate additions have not significantly affected the production of MeHg in surface soil flocs.
 - Drying and rewetting cycles exacerbate the formation of MeHg in the Everglades and in Stormwater Treatment Areas (STAs). Drying and consequent aeration of soils results in oxidation of sulfide to sulfate, which "feeds" Hg-methylating sulfate-reducing bacteria when soils are rewetted. However, once sulfide (the end-product of microbial sulfate reduction) begins to accumulation in soils interstitial waters, MeHg production rate is reduced.
 - Minimization of drying events is a management tool that can be used in STAs that are prone to elevated MeHg production. STAs most prone to high MeHg production appear to be those that have not been previously used for agriculture. Very high levels of reduced sulfur in STAs constructed on former agricultural soils, like the former ENR, inhibit MeHg production through the formation of Hg-sulfide species that are not available to microorganisms for uptake and methylation.
 - MeHg strongly bioaccumulates in the aquatic food chain and in fish-eating birds and mammals. Benthic food webs are dominant in the marsh ecosystem and are the main source of MeHg to fish.
 - The primary emissions sources of mercury in South Florida circa 1990 were incineration from both municipal solid waste and medical waste. Mercury emissions from incinerators of all types have declined by approximately 90%

9/9/2005 DRAFT 2B-2

26 27 28

29

19

20 21

22 23

24

25

30 31

32 33 34

35 36

37

38 39 40

41 42

43

44 45 46

47

48 49 50

51 52 53

54 55

56 57

58 59

60

since then. Principal reasons for this decline were pollution prevention activities that resulted in reductions of mercury concentrations in waste, as well as incinerator emissions controls.

- Although at the time of peak levels of atmospheric deposition of mercury in South Florida circa 1990, the precise proportions of locally derived versus globally derived mercury remain uncertain, the data indicate that the majority of mercury deposition to the Everglades originated from sources within South Florida.
- The southern Everglades exhibits strong MeHg production and bioaccumulation and, therefore, high mercury levels are found in fish and wildlife. At the apparent peak of mercury deposition and mercury levels in Everglades biota circa 1990, levels were clearly high enough to pose risk of chronic toxicity to wildlife. With subsequent declines in wildlife body burdens, the threat has decreased, but the mercury risk to humans and wildlife continues to be a water quality concern.
- Monitoring of Everglades fish and wading birds indicates a significant decline in mercury over the period from 1994–2004 in both largemouth bass and great egrets by up to 80 percent.
- Mercury concentrations in largemouth bass in WCA-1, 2, and 3 have declined by about 40 to 80 percent over the past decade, but still remain relatively high compared to the USEPA's recommended MeHg fish tissue criterion of 0.3 mg/kg.
- Very high concentrations of mercury (1.2 1.6 mg/kg) in largemouth bass are
 evident in the Everglades National Park (ENP or Park), particularly in the Shark
 River Slough at sites in the L-67 Extension canal and North Prong Creek.
 Mercury levels in largemouth bass have not declined in the ENP, but rather have
 increased over the past 5-6 years, possibly because sulfate levels in the ENP are
 now optimal for SRB.
- MeHg production and concentrations at the former mercury "hot spot" near site 3A-15 (CA315) in Water Conservation Area 3 (WCA-3) have subsided substantially since 1993, correlating with declines in mercury emissions, sulfate, and DOC concentrations in surface waters at this site. Site 3A-15 sulfate concentrations are now well below optimal levels for MeHg-producing SRB.
- Sulfate continues to be discharged from the Everglades Agricultural Area to the Everglades at high rates. It is likely that flow changes resulting from the Stormwater Treatment Areas coming online and/or other hydrological manipulations have caused the mercury hot spot to be relocated to the Everglades National Park. Enhanced monitoring is needed to track the changing spatial patterns of mercury methylation throughout the system.
- Presently, anthropogenic point source emissions of mercury from South Florida are calculated to be a small fraction (about 7 percent) of peak historical levels. However, the South Florida area source influence, composed of a myriad of smaller mercury emissions sources, remains poorly quantified. Some evidence suggests that local source influences are no longer declining (e.g., the total number of medical waste incinerators in Florida has rebounded from a low of two to eighteen statewide, with eight in South Florida). Despite the substantial earlier reductions, a micro-emissions inventory of South Florida may be required

DRAFT 2B-3 9/9/2005

- to identify and develop Best Management Practices, if the proposed USEPA's fish tissue mercury water quality criterion is to be attained.
 - Changes in mercury concentrations in largemouth bass appear to have stabilized at most Everglades sites post-1998. Thus, in the absence of further reductions in larger-scale emissions that impact South Florida, the mercury problem will likely persist, albeit at a lower level than ca. 15 years ago, unless alternative means for mitigating MeHg bioaccumulation in the food chain are elucidated and implemented. After mercury source reductions, the most promising remaining means of managing MeHg may be via controlling sulfate loading to the Everglades.

Additional findings and issues of continuing concern include the following:

- In 2003 and 2004, annual volume-weighted total mercury (THg) concentrations in rainfall were elevated as compared to previous years (monitoring commenced in 1994) at all three Everglades monitoring stations (e.g., stations at the Everglades Nutrient Removal Project, Florida Power and Light's Andytown substation, and the ENP's Baird Research Center). Accordingly, wet deposition (flux), which is a function of both concentration and rainfall, increased at two of the sites, and remained substantially greater than most other regions in the United States monitored by the Mercury Deposition Network.
- There remains a need to determine the relative importance of local, regional, and global atmospheric sources of mercury on mercury levels in fish in the Everglades, to evaluate options for Everglades mercury reductions.
- Mercury concentrations in largemouth bass in WCA-1, 2, and 3 while having declined by about 40 to 80 percent over the past decade, still remain relatively high (mean of means ca. 0.5 mg/kg) compared to the USEPA's recommended MeHg fish tissue criterion of 0.3 mg/kg.
- The declines in mercury concentrations in Everglades largemouth bass appear to have stabilized at most sites after 1998, and have increased substantially in fish in the Everglades National Park. Thus, in the absence of further reductions in larger-scale mercury emissions that impact South Florida, the mercury problem in this region will likely persist, albeit at a lower level than 10 to 15 years ago, unless alternative means for mitigating MeHg bioaccumulation in the food chain are elucidated and implemented. The most promising remaining means of managing MeHg in the Everglades may be by controlling sulfate loading.
- Very high concentrations of mercury (1.2 1.6 mg/kg) in largemouth bass are evident in the Everglades National Park (ENP or Park), particularly in the Shark River Slough area at sites L67F1 and North Prong Creek. As well and as observed in previous years, for 2004 resident sunfish at site L67F1 had significantly greater mercury burdens than fishes from other Everglades sites. Mean concentration of THg in sunfish (*Lepomis* spp.) collected at L67F1 in 2004 was 0.44 mg/kg which is well above both the USFWS and USEPA predator protection criteria (See Appendix 2B-1). Because sunfish represent the preferred prey item of many fish-eating species in the Everglades, there is a need to elucidate the cause of elevated mercury levels in the Park.
- Drying and rewetting cycles exacerbate the formation of MeHg in both the Stormwater Treatment Areas and the Everglades. The Comprehensive

9/9/2005 2B-4 DRAFT

Everglades Restoration Plan by reducing the frequency of drying and rewetting cycles may decrease MeHg production. Aquifer storage and recovery however by introducing high-sulfate connate seawater into the Everglades, may increase mercury methylation rate.

- With the rerouting of water flow in the Everglades in recent years as a result of the STAs coming online and other hydrological alterations, it appears that the mercury hot spot has been relocated. Station 3A-15, the former mercury hot spot, now has low mercury levels, while mercury in fish in the in the Shark River Slough area of the Everglades National Park are high, possibly because sulfate concentrations are optimal for mercury methylation. Additional survey work is recommended to locate the new mercury hot spot(s) in the Everglades, and to verify the causes of elevated mercury.
- The planned increase in water delivery from the Stormwater Treatment Areas to the Everglades National Park could widen the area of elevated mercury concentrations in fish in the Park if sulfate concentrations in this "new" water are elevated above Everglades background.
- Too little notice has been taken to date of Everglades sulfur biogeochemistry other than as regards mercury methylation. Sulfur as a biologically very active element has forms that are highly toxic (sulfide), and others (sulfate) which will promote eutrophication of the Everglades via liberation of phosphorus from organic material in sediments. If Everglades restoration is to be achieved, there is a need to investigate further the effects of sulfur pollution from the Everglades Agricultural Area on the Everglades ecosystem, and to address this issue.

The monitoring, research, modeling, and assessment studies described in this chapter and appendices were coordinated among the collaborators in the SFMSP. This group of agencies, academic and private research institutions, and the electric power industry has advanced the understanding of the Everglades mercury problem more effectively and faster than could have been accomplished individually by either the FDEP or the District. The SFMSP has operated under a coordinated plan; however, each agency operates within its own management and budgeting framework. The goal of the SFMSP is to provide the FDEP and the District with information to help these agencies make mercury-related decisions about the Everglades Construction Project, as well as other restoration efforts, on the schedule required by the Everglades Forever Act. Consequently, SFMSP studies are now providing a better understanding of why the Everglades is an "at-risk" system for mercury contamination.

RESEARCH PROGRESS

The following research needs were identified in Everglades Consolidated Reports (ECRs) from the South Florida Water Management District (District or SFWMD). An update on the progress made with respect to each of the research needs is presented below.

1. Quantify the no-effect level for wading bird dietary exposure to methylmercury (MeHg) to support a revised numerical Class III water quality standard (2000 ECR).

Several lines of evidence suggest that environmentally relevant exposure to mercury has had an effect on nesting by long-legged wading birds in the Everglades. First, methylmercury is known to have effects on reproductive success and egg viability in birds. Specifically in White Ibises in the Everglades, mercury contamination may be associated with

DRAFT 2B-5 9/9/2005

altered hormonal condition, which could lead to disruption of reproduction. The temporal pattern of methylmercury contamination also seems to follow fluctuations in numbers of breeding birds during the past century. Finally since the dramatic reduction in methylmercury contamination in the late 1990's, numbers of breeding wading birds have increased dramatically.

While this information collectively is suggestive of a role for mercury contamination in fluctuations in breeding success and size of breeding population in the Everglades, the evidence remains largely associative and therefore inconclusive. In an effort to directly test the hypothesis that wading bird reproduction is affected at the population level by ambient concentrations of methylmercury in the Everglades, Florida DEP and the U.S. Fish and Wildlife Service have jointly funded an experimental investigation of effects at University of Florida.

In this research project, the effects of Everglades-appropriate methylmercury doses in food will measured on the development, endocrine function, growth, foraging abilities and reproductive success of captive White Ibises.

- To date, a 13,000 square foot free-flight aviary has been constructed in Gainesville, populated with 180 White Ibises from the Everglades. These animals were collected as nestlings, and thus their mercury exposure can be controlled nearly throughout their lives. They are likely to attempt breeding for the first time in spring '07. The birds are divided into large social groups appropriate to the nature of this species, and dosed at 0, 0.3, 0.1 and 0.05 ppm methylmercury wet weight in diet. These doses span the range of concentrations in naturally occurring food items that ibises eat in the Everglades.
- 220 2. Quantify "global versus local" and "new versus old" sources of mercury (2001 ECR) from receptor relationships of mercury (2002 ECR).
- The FDEP and the U.S. Environmental Protection Agency (USEPA) continue to:
- 223 (a) Support atmospheric mercury studies relevant to the mercury control policy in U.S. southeast coastal regions,
- 225 (b) Sponsor studies that directly measure transport of mercury species into Florida,
- 226 (c) Describe and quantify the atmospheric reactions of mercury that facilitate deposition, and
- 227 (d) Employ photochemical grid model to organize the atmospheric processes research into information to support decision making.
- In the coming year we plant to reorganize the Speciated Atmospheric Mercury Study (SAMS), operated by the Broward County Air Quality Division to focus on larger-scale atmospheric mercury processes that influence Florida.
 - We will retain the existing SAMS at Coral Springs and move our 2nd Tekran Hg speciation system to another location, likely either Tampa or Everglades National park. This new alignment is a step toward our desire to have three full mercury monitoring super sites in peninsular Florida as a part of the 'Third-Generation Mercury Study' to come. SAMS makes highly time-resolved measurements of all known forms of atmospheric mercury and associated tracer species. It is expected that this measurement and modeling project will continue through 2008.

9/9/2005 2B-6 DRAFT

 As a prelude to this 'Third-Generation Mercury Study' (*EgHgIII*), the U.S Environmental Protection Agency (USEPA) has established mercury 'super sites' in Ohio and Hawaii to assess and contrast the impacts of the emissions and transport among the handful of intensive mercury monitoring sites worldwide.

This joint study by the USEPA and the FDEP envisioned for 2005 and 2008 will add monitoring sites at Everglades National Park (ENP) and Tampa, Florida as part of a nascent, global network. Coordinated analyses among these sites will provide improved data, tools, and understanding in the effort to resolve the question of the importance of long-distance transport of mercury into Florida.

3. Revise the Everglades Mercury Cycling Model (E-MCM) to include relationships between sulfur concentrations and mercury dynamics (2001 ECR).

Research aimed at defining both the details of the mercury methylation process and its quantitative relationships with factors that influence this process is important to understanding what controls the effective net production of MeHg in the aquatic system. The South Florida Mercury Science Program (SFMSP) has devoted significant effort to this topic from 2001–2005. A specific focus has been to organize the work around the requirements of the Everglades Mercury Cycling Model, while incorporating qualitative and quantitative information as it becomes available into this evolving model and providing a more robust tool for evaluating management options. The data from field studies are being fed directly into model formulation and testing. The results are then used to calibrate and test the E-MCM in order to simulate the effects of various hydrology, water quality, or restoration activities.

E-MCM development and application remains an SFMSP goal to continue to develop the model as a tool to assess system-wide responses to mercury sources, water quality, and management scenarios being evaluated by the Comprehensive Everglades Restoration Plan (CERP).

Increasing focus on the role of sulfate as it influences MeHg production has led to concomitant effort to incorporate sulfur cycling in the E-MCM. The coupling of mercury cycling to sediment biogeochemical processes is complex, involving issues related to mercury bioavailability and the relative propensity of different principle bacterial functional groups and genera within those groups to methylate inorganic mercury [Hg(II)]. The goal of the modeling component of this project is to incorporate information on the biogeochemical characteristics of Everglades sediments with experimental and observational information on sediment mercury geochemistry and microbial transformation into a diagenetic, transport-reaction mode. This model will be used to predict the depth distribution of mercury methylation as a function of sediment biogeochemical zonation, and the relative abundance and physiological-biochemical properties of different functional groups of microorganisms.

The potential role of sulfate has also been underscored through extensive modeling with the E-MCM of recent historical trends of mercury concentrations in largemouth bass in the Everglades over approximately the past decade. This modeling has examined the cause and effect relationship between changes in atmospheric deposition, sulfur, dissolved organic carbon (DOC), and phosphorus dynamics as the possible drivers for the observed declines in largemouth bass mercury concentrations. The modeling effort has taken advantage of our current state-of-the-art understanding of trophic state interactions with the mercury cycle. The model hindcasting suggests that sulfate trends may have contributed as significantly as changes in atmospheric inputs of mercury to the observed biota trends. It also illustrates that

DRAFT 2B-7 9/9/2005

287

288

289

290

291

292293

295

296

297

298

299

300

301 302

303

304

305

306

307308

309

310

311312

313

314

315

316

317318

319

320

321

322

323

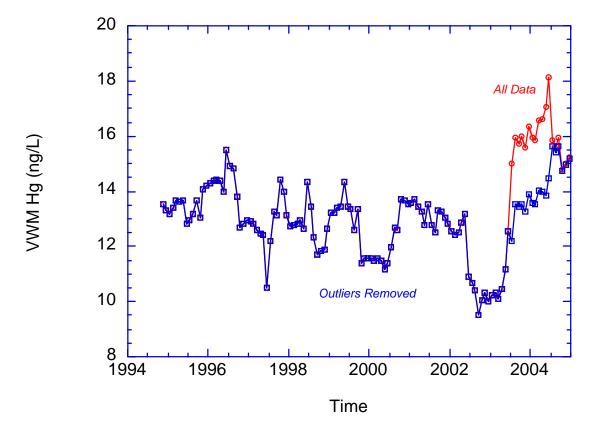
324

- the role of sulfur (i.e., the sulfate/sulfide redox couple) in mercury methylation needs to be further investigated and quantified.
- 285 4. Research geochemical controls on mercury methylation (2001 ECR).

The FDEP continues to support a series of studies with the U.S. Geological Survey and the Smithsonian Institution. Field mesocosm experiments using stable-isotope and other tracer techniques have been used to examine the interactions between mercury, sulfur, and DOC, and methylation rates of "old versus new" mercury. Field work began with deployment of mesocosms in spring 2001; field experiments are presently scheduled through June 2006. Further research on the influence of the effects of wetting and drying cycles on MeHg production is currently scheduled for 2005–2006. Results to date are included in Appendix 2B-2 of the 2006 South Florida Environmental Report – Volume I (SFER).

5. Collect data on trends of mercury in Florida (2002 ECR).

Long-term trends of mercury in Everglades fish are presented in this chapter. Continued collection of these data provides a demonstration of the effects of changes in mercury deposition, water chemistry, and water flow on mercury exposure of fish and wildlife.


TRENDS IN ATMOSPHERIC DEPOSITION OF MERCURY

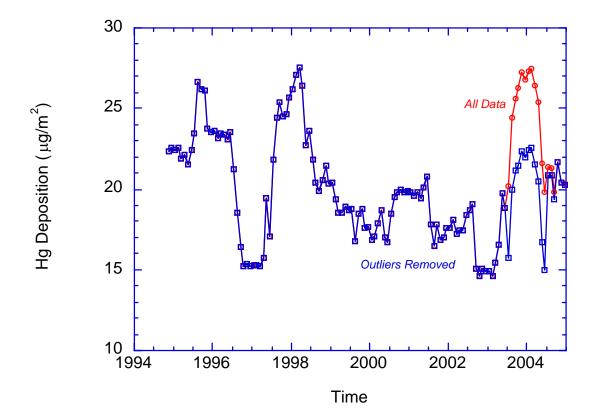
A continuous record of wet deposition fluxes and concentrations of mercury is available from November 1993 through December 2004 collected from the Beard Research Center in the ENP as part of the Florida Atmospheric Mercury Study (FAMS) from 1993–1996 (Pollman et al., 1995, Guentzel et al., 1995; Guentzel et al., 2001) and the National Atmospheric Deposition Program's (NADP's) Mercury Deposition Network (MDN) from (http://nadp.sws.uiuc.edu/mdn). This report includes two more years of data since the last statistical analysis of the wet deposition fluxes for mercury was performed from these ENP samples to determine whether trends can be related to changes in the atmospheric signal or are related to changes in rainfall patterns (Atkeson et al., 2005). Using analysis of variance (ANOVA) to account for the effects of both seasonal dynamics and rainfall volume on mercury concentrations, Atkeson et al. (2005) concluded that volume-weighted mean (VWM) mercury concentrations declined by approximately 3 nanograms per liter (ng/L) due to factors other than these two variables. The magnitude of this decline (approximately 25 percent) was more than can be ascribed to larger-scale sources alone (particularly, global sources) during this time, estimated between 7 and 11 percent, based on trends in ambient air concentrations of total gaseous mercury in the northern hemisphere between 1990 and 1999 (Slemr et al., 2003).

The trend of declining concentrations of Hg in wet deposition noted by Atkeson et al. (2005) appears, however, to have concluded. Annual VWM concentrations (calculated as a 12-month running concentration) have increased from a minimum value of approximately 10 ng/L in late 2002 through early 2003 to concentrations in excess of 16 ng/L by mid-2004 (**Figure 2B-1**). These annual average VWM concentrations are the highest that have been observed during the period of record at the Beard Research Station. Inspection of the weekly MDN data for 2003 and 2004 showed that there were a series of 5 weeks that had concentrations exceeding 50 ng/L – the highest weekly or monthly concentrations in the period of record. For four of these samples, some debris had been noted in the collector, but the degree of contamination was insufficient for MDN to flag and invalidate these samples. Likewise, analysis of the same weekly samples for

9/9/2005 2B-8 DRAFT

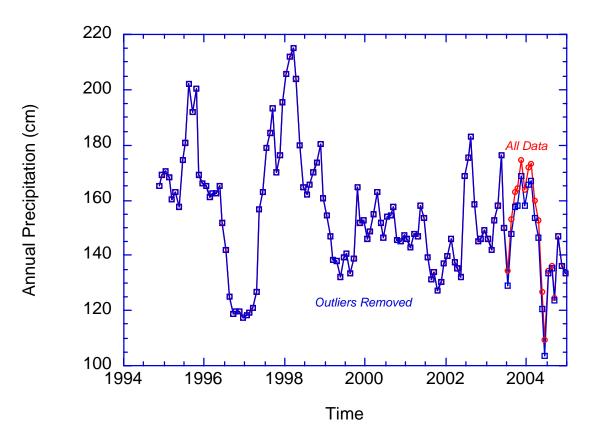
major cations and anions at the co-located NADP rainfall collector did not suggest any obvious degree of contamination or disturbance.

Figure 2B-1. Running annual volume weighted mean Hg concentrations (presented monthly) observed at MDN site 11, Beard Research Station, Everglades National Park, 1993 – 2004. Two curves are presented, the first (red) curve includes all the data for each week reported by MDN; the second (blue) curve excludes all weeks when the volume weighted mean concentration of Hg exceeded 50 ng/L. Data from Guentzel et al. (2001) for 1993 through 1996, and MDN for 1996 through 2004.

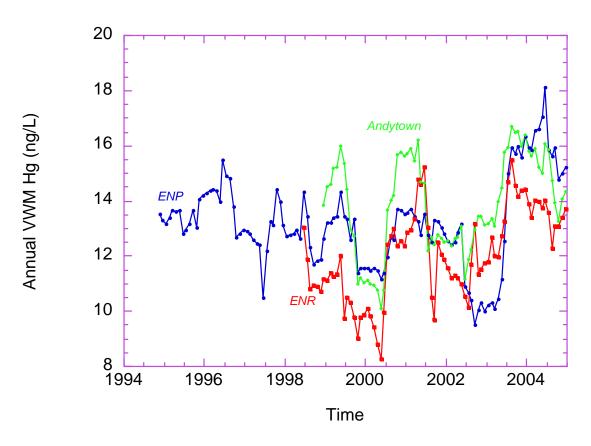

Annual VWM Hg at the other two south Florida MDN sites (stations at the ENR Project and the Florida Power and Light Andytown substation) also show very similar trends of increasing concentrations in 2003 through mid-2004 (**Figures 2B-2 and 2B-3**). This suggests first that the trends are not an analytical anomaly, and second that the source of the apparent increase impacts the entire Everglades (**Figure 2B-4**). Consequently, wet deposition (flux), which is a function of both concentration and rainfall, also increased in 2003-2004. Wet atmospheric loading of total mercury (THg) to the Everglades Protection Area (EPA) was estimated to range from 161 to 258 kilograms per year, or kg yr⁻¹ (Appendix 2B-1); the upper range exceeding loading estimates for

DRAFT 2B-9 9/9/2005

346


347

1994 (238 kg yr⁻¹) and 1995 (206 kg yr⁻¹). Due to a combination of elevated concentrations and the high annual rainfall in South Florida, wet THg deposition to the Everglades remains substantially greater than most other regions monitored by the NADP's MDN.


Figure 2B-2. Same as Figure 2B-2, except for running annual wet deposition flux for Hg at Beard Research Center.

9/9/2005 2B-10 DRAFT

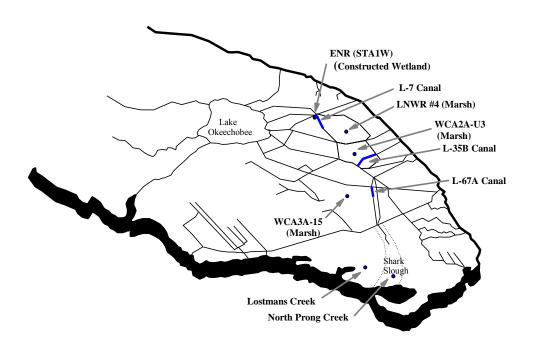
Figure 2B-3. Same as Figure 2B-2, except for running annual precipitation volume at Beard Research Center.

352

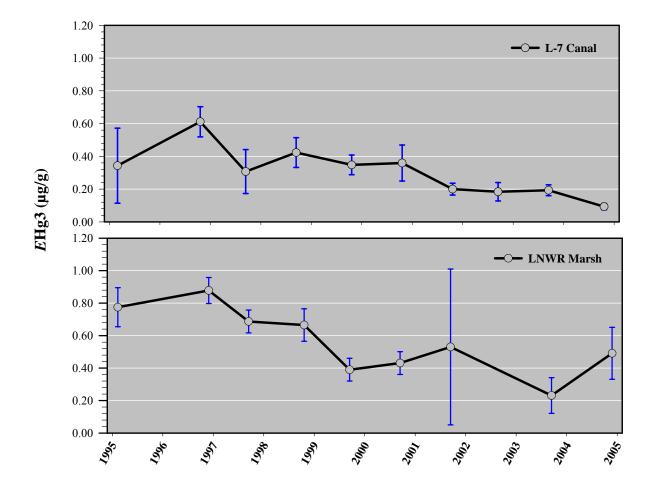

Figure 2B-4. Running annual VWM Hg concentrations in wet deposition at all three south Florida MDN sites.

9/9/2005 2B-12 DRAFT

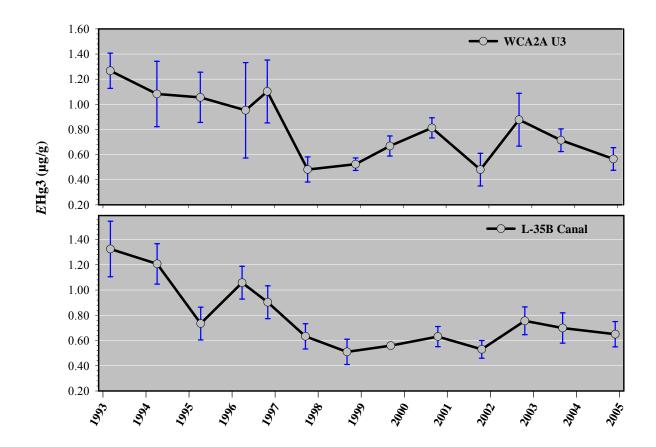
CONCENTRATIONS OF MERCURY IN EVERGLADES FISH


Trends in Mercury Concentrations in Everglades Largemouth Bass

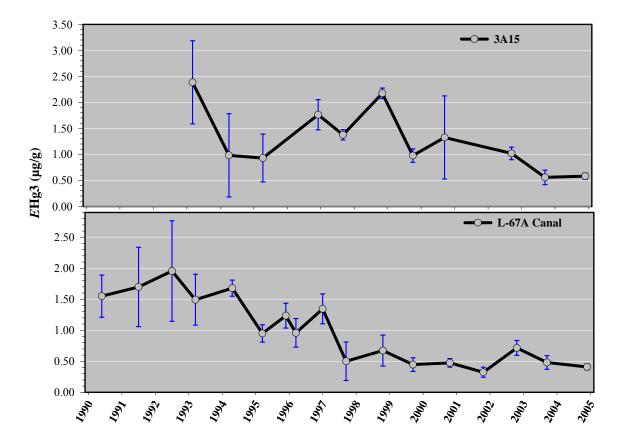
Data are available to examine long-term trends in mercury concentrations in largemouth bass (*Micropterus salmoides*) from sites throughout Florida since 1988, including nine sites in the Everglades (Lange et al., 2005). **Figure 2B-5** demonstrates substantial declines in mercury in age 1-2 cohort largemouth bass at marsh and canal sites in WCAs 2 and 3, with high concentrations still evident in the Everglades National Park.


Figure 2B-5. Time series of geometric mean mercury concentrations for largemouth bass (age 1-2 cohort) for five Everglades sites. Sites L-35B and L-67A are canal sites in WCA2 and WCA3, respectively and sites U3 and 3A-15 represent interior marsh sites located in WCA2A and WCA3A, respectively (μ g/g = μ g/kg = μ g). The ENP NP site is located in the Everglades National Park (North Prong Creek) in the Shark River Slough.

Largemouth bass, a popular Everglades sport fish, as well as a high trophic level fish, were selected in the late 1980's as a species to monitor as regards to mercury pollution. A number of long-term monitoring sites for tracking mercury concentrations in largemouth bass were established across the Everglades as early as 1990 (Lange et al., 2005) (**Figure 2B-6**). Mercury concentrations in age-standardized three-year-old largemouth bass in WCAs 1, 2, and 3, while having declined by approximately 40 to 80 percent over the past 10 to 15 years (**Figures 2B-7** through **2B-9**, respectively), remain relatively high (mean of means ca. 0.5 mg/kg) as compared the USEPA proposed criterion of 0.3 mg/kg MeHg in fish tissue for the protection of human health related to the consumption of freshwater and estuarine fish.


Figure 2B-6. Location of the Florida Fish and Wildlife Conservation Commission long-term monitoring sites in the Everglades Protection Area (EPA) region (Lange et al., 2005).

9/9/2005 2B-14 DRAFT


Figure 2B-7. Long-term monitoring sites located in the Refuge (within WCA-1), showing the age-standardized mercury concentration for three-year-old largemouth bass (EHg3) (μ g/g = mg/kg = ppm) and the 95-percent confidence interval (95% C.I.). (Lange et al., 2005).

379

Figure 2B-8. Long-term monitoring sites located in WCA-2 showing the age-standardized mercury concentration (EHg3) (μ g/g = mg/kg = ppm) for three-year-old largemouth bass and the 95% C.I. (Lange et al., 2005).

380

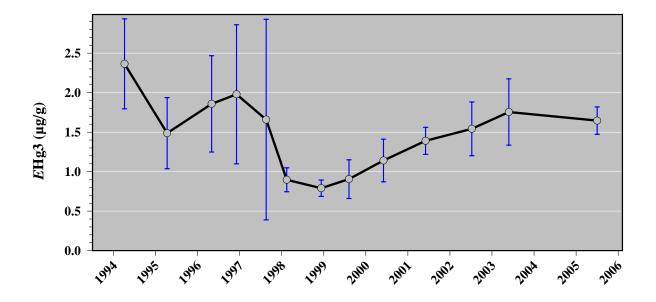


Figure 2B-9. Long-term monitoring sites located in WCA-3 showing the age-standardized mercury concentration (EHg3) (μ g/g = mg/kg = ppm) for three-year-old largemouth bass and the 95% C.I. (Lange et al., 2005).

Mercury Concentrations in Fish in the Everglades National Park

In contrast to the 40-80% mercury concentration declines in largemouth bass in WCAs 1, 2, and 3 over the past 10-15 years, in the Everglades National Park declines over the period of record have been small (**Table 2B-1**). Recent data indicate that high mercury concentrations - 1.2 and 1.6 mg/kg - in largemouth bass are evident in the Everglades National Park in the Shark River Slough area at sites L67F1 (see Appendix 2B-1) and North Prong Creek respectively. At the North Prong Creek station (**Figure 2B-10**), mercury concentrations appear to have increased over the past 6 years

Sunfish from the northern Everglades National Park (L67F1) have also been found to have elevated mercury levels (see Appendix 2B-1). As observed in previous years, for 2004 resident sunfish at site L67F1 had significantly greater mercury burdens than fishes from other Everglades sites. Mean concentration of THg in sunfish (*Lepomis* spp.) collected at L67F1 in 2004 was 0.44 mg/kg. The U.S. Fish and Wildlife Service (USFWS) has proposed a predator protection criterion of 0.1 mg/kg THg in prey species (Eisler, 1987). The USEPA proposed 0.077 mg/kg and 0.346 mg/kg of MeHg for trophic level (TL) 3 and 4 fish, respectively, for the protection of wildlife (USEPA, 1997). Everglades National Park populations of piscivorous avian and mammalian wildlife continue to be at risk of adverse effects from mercury exposure, because sunfish represent the preferred prey item of many fish-eating species in the Everglades. As such, there is a need to elucidate the cause of elevated mercury levels in the Park; a possibility is that sulfate concentrations have not declined in the ENP as much as for other areas such as WCA-3A-15 (i.e., the former MeHg hot spot), or have increased, either due to natural inputs (e.g., estuarine or tidal influenced sites), or due to sulfate loading in stormwater runoff.

Figure 2B-10. The age-standardized mercury concentration (EHg3) (μ g/g = mg/kg = ppm) for three-year-old largemouth bass from the North Prong Creek, located in the Lower Shark River Slough in ENP. Error bars show the 95% C.I. (Lange et al., 2005).

9/9/2005 2B-18 DRAFT

Table 2B-1. Long-term monitoring sites located in WCA-1, 2, and 3, and the ENP, showing the station location, the sampling period of record (POR), and percent change over the POR in age-standardized median mercury concentration for three-year-old largemouth bass (Lange et al., 2005).

1	Λ	4
4	v	U

Location	Percent Change	Reported POR
Refuge (WCA-1)		
L-7 Canal	-73	1995–2004
Refuge Marsh	-37	1995–2004
WCA-2A		
WCA-2A U3	-55	1993–2004
L-35B Canal	-51	1993–2004
WCA-3A		
3A-15	-76	1993–2004
L-67A	-74	1990–2004
ENP		
North Prong Creek	-30	1994–2004

SULFUR POLLUTION OF THE EVERGLADES

Freshwater wetlands, especially rainwater driven ecosystems such as the Everglades, typically have low sulfur loadings and thus minimal sulfur concentrations. High concentrations of sulfate-sulfur are evident, however, in surface waters of the northern Everglades. Compared to sulfate concentrations of ≤ 1 mg/L in pristine areas of the Everglades, marshes in portions of the Water Conservation Areas (WCA's) have surface water sulfate concentrations that average nearly 60 mg/L (USGS 2004).

Concentrations of sulfate in Everglades surface waters indicate that canal water draining the Everglades Agricultural Area (EAA) is the principal source of sulfate to Everglades marshes (**Figure 2B-11**; Chapter 2A, Figure 2A-11). Stable isotope data (δ^{34} S of sulfate in surface water) are also consistent with agricultural sulfur and sulfate from other fertilizers and soil amendments used in the EAA as being the principal source of the sulfate in the canals (USGS 2004; Orem et al. In Press).

In the EAA, especially in sugarcane growing areas, agricultural sulfur (98% S⁰), a form of elemental sulfur, is applied to soils because the oxidation of this elemental sulfur to sulfate acidifies the soils and thus mobilizes applied phosphorus fertilizer for more effective uptake by crops. This sulfate is then remobilized from the agricultural soils by rainfall and/or irrigation,

transported in runoff to the canals in the EAA, and then transported to the Everglades in canal water discharge (Orem et al. In Press). Sulfate loadings from the EAA continue to be significant (See Chapter 2A, Table 2A-4).

Sulfate, unlike phosphorus, is not actively removed in significant quantities by plants, and thus penetrates much farther into the Everglades from its point of EAA canal discharge as compared to phosphorus. As such, agriculturally derived phosphorus entering the Everglades has caused eutrophication of 6 to 10 percent of the ecosystem, while sulfate contamination affects as much as 30% of the freshwater Everglades (USGS 2004). (Mercury contamination affects 100% of the Everglades.)

Sulfate directly affects the rate of mercury methylation by naturally-occurring sulfate reducing bacteria; the end product of metabolism being MeHg, a highly toxic and bioaccumulative form of mercury. For many freshwater wetlands, MeHg does not represent a significant environmental problem because of low sulfate concentrations. The sulfur contamination from the EAA however stimulates MeHg production within the Everglades ecosystem (Gilmour et al., 1992; Gilmour et al., 1998) and is a contributing factor regarding the excessive levels of mercury in Everglades fish and wildlife.

Excess sulfate has concentration-dependent effects with respect to MeHg production: (1) stimulation through increased rate of sulfate reduction and MeHg production by sulfate reducing bacteria; and, (2) inhibition through buildup of excess sulfide which binds Hg making it unavailable for methylation. As a result of this dichotomous effect of sulfur on the methylation of mercury, areas with intermediate concentrations of sulfate exhibit the highest MeHg production. In the Everglades, the highest MeHg concentrations occur where sulfate concentrations in surface water are somewhat higher than background (2-10 mg/L), and where porewater sulfide concentrations are moderate (5 to 150 μ g/L or ppb) (Orem et al., 1997).

Though very high sulfate concentrations in Everglades surface waters may result in elevated sulfide levels in sediment porewater, and thus reduce MeHg production, high sulfide levels are not desirable. Sulfide, as undissociated hydrogen sulfide - rotten-egg gas - is water soluble and extremely toxic. The State does not have a surface water quality criterion for sulfide - hydrogen sulfide, though USEPA has provided guidance on safe surface water concentrations of sulfide (USEPA 1976; 1986) and the Criteria Maximum Concentration as then recommended remains at $2.0~\mu g/L$ (USEPA 2004) - that is concentrations in excess of $2.0~\mu g/L$ (ppb) "would constitute a long-term hazard to most fish and other aquatic wildlife".

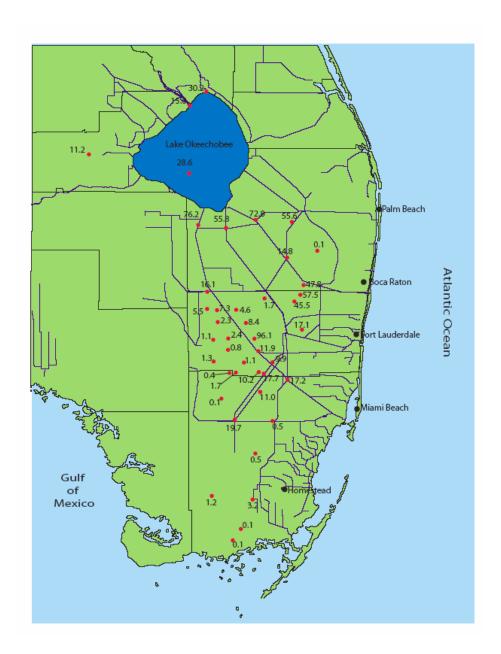
The USEPA has not yet developed a criterion for sulfide in sediment porewater, though literature values for toxic endpoints for freshwater invertebrates generally range from ca. 20 to 1,000 ppb sulfide (Wang and Chapman 1999). By comparison for the Everglades, at sites of high surface water sulfate contamination near EAA canal discharge points, sediment porewater sulfide concentrations range from 100's to 1,000's of ppb. Porewater sulfide concentrations at sites distant from canal discharge, but receiving some excess sulfate, range from 1 to 100's of ppb. Pristine Everglades sites have porewater sulfide values usually <0.1 ppb (**Figure 2B-12**). As such, it is probable that the toxic effects of elevated sulfide in Everglades porewaters, resulting from sulfate contamination from the EAA, is causing an "imbalance of flora and fauna".

Sulfur as sulfate can alter the Everglades via other mechanisms. Sulfur is an important element in the biogeochemistry of wetland ecosystems because of the role of sulfate as a terminal electron acceptor in microbial sulfate reduction. Sulfate allows for the metabolism of sedimentary organic matter in the absence of oxygen, and in the process, organically bound

9/9/2005 2B-20 DRAFT

phosphorus and nitrogen are released and mobilized into sediment porewaters and then the overlying surface waters.

Lamers et al (1998) described the phenomenon of 'internal eutrophication', whereby phosphate concentrations in the interstitial water of a freshwater wetland increased considerably as a result of sulfate treatment, and concluded that reduction in nutrient input to a wetland alone may not be sufficient to restore the ecosystem. Preliminary Everglades data too show that sulfate additions to surface waters result in increased liberation of phosphorus from sediments and increased sediment porewater and surface water phosphorus concentrations (Bill Orem, USGS, Pers. Comm.).

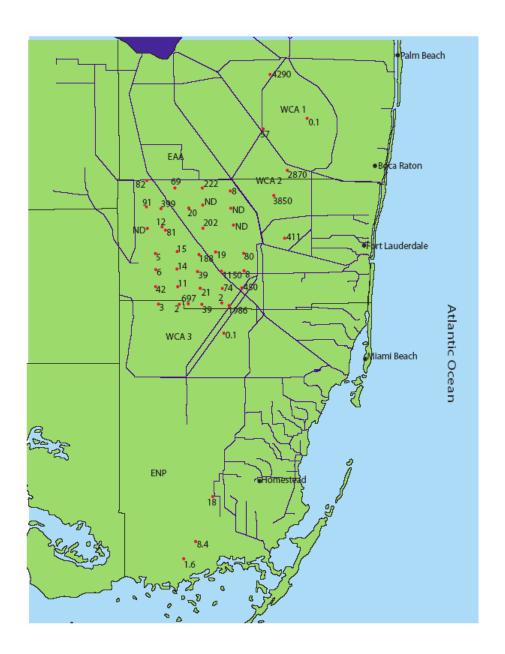

Accordingly, the issue of sulfate-induced eutrophication of the Everglades may have to be considered. It is highly likely that internal eutrophication is operating in the Everglades and hampering Everglades restoration through remobilization of phosphorus from organic material in sediments to sediment porewaters and surface waters. It is even likely that sulfate is an important factor in liberating phosphorus from organic material in sediments in phosphorus-contaminated areas of the Everglades, increasing porewater phosphorus concentrations, and contributing to the replacement of sawgrass by cattail.

As little notice has been taken of Everglades sulfur biogeochemistry to date other than as regards mercury, we are unable at this time to quantify the magnitude of internal phosphorus loadings to various marsh areas, nor estimate the time delay this process will impose on Everglades restoration. Considering the great efforts being made to reduce phosphorus inputs to the Everglades, it would seem advisable to assess the magnitude of the sulfate effect on phosphorus release from Everglades sediments. As well, there is a need to assess the effect of toxic sulfide on Everglades infauna.

DRAFT 2B-21 9/9/2005

504

505



506

507

508 509

Figure 2B-11. Average sulfate concentrations (mg/L = ppm) in surface water in the south Florida ecosystem, including: Lake Okeechobee and its drainage, EAA canals, and the freshwater Everglades, from USGS sampling 1994-2000 (Orem et al. In Press).

Figure 2B-12. Average sulfide concentrations (μ g/L = ppb) in sediment porewater in the northern Everglades, from USGS sampling 1995-2000 (Orem et al. In Press).

DRAFT 2B-23 9/9/2005

MERCURY PROGRAM FUTURE ACTIVITIES

For SFY 2006/07 we intend to shift focus back to the atmospheric influences of mercury as we continue to view atmospheric deposition as a primary driver of mercury load, methylation, bioaccumulation and risk in Florida waters and the Gulf of Mexico, albeit cognizant of other influences particularly the interaction between mercury methylation and sulfur chemistry. Anticipated projects are described below.

Third Generation Analysis of Mercury Transport and Fate.

The largest anticipated effort will be initiation of a joint 3-year project with USEPA ORD and NOAA ARL to conduct a 3^{rd} generation mercury transport and fate study³ to resolve some of the significant uncertainties in scientific studies to date. Tentatively given the moniker of EgHgIII, (Everglades Mercury III) this project will represent a significant refocusing on gaining a greater understanding of the relative importance of the local, regional, and global scales of mercury influence.

In answer to the questions that this raises, in SFY 2005/06 Florida DEP, USEPA-ORD, Everglades National Park and NOAA ARL are jointly planning toward a 3rd generation study of the atmospheric sources and influences that contribute heavily to the aquatic and biotic problems of mercury bioaccumulation in Florida water. In the coming year our intent is to review the state of the science of the atmospheric cycle of mercury and, capitalizing on the substantial improvements in monitoring and modeling technologies since the SoFAMMS study of 1995/96, return to the field in 2006-07 for a 3-year multi-site field study in south Florida in SFY in 2007/08.

We propose a coordinated effort among the participating agencies that would incorporate sites that should allow us to gauge the influence of local and regional sources on all of Florida and much of the Gulf of Mexico. SFWMD provides monitoring support for this effort by its continuing sponsorship of the three Mercury Deposition Network (MDN) sites which record annual atmospheric mercury deposition load and continue trends of mercury deposition across southern Florida continue to support monitoring. We intend to:

9/9/2005 2B-24 DRAFT

³The *Florida Atmospheric Mercury Study* (FAMS, 1992-1996; PI's J. Keeler, Wm. Landing, & C. Pollman) measured deposition mercury load at 9 sites in Florida, establishing the understanding that atmospheric load is the primary source of mercury to Florida waters. FAMS, however, was not conceived as a process study and had limited power to infer causative factors. In 1995/96 USEPA, FDEP, and the University of Michigan (Gerald Keeler, PI) conducted a 2nd generation, intensive, multi-site '*South Florida Monitoring and Modeling Pilot Study*' (SoFAMMS) that showed strong relationships between local source emitters and tracers collected in rainfall samples. Substantial uncertainty obtained to this study, as it became apparent from the results that key measurements of mercury species were of paramount importance but techniques to make those measurements were lacking, (i.e. the complex speciation of mercury in the samples was hitherto unappreciated of paramount importance in being able to determine source-receptor relationships. As we now contemplate a final set of studies on the atmospheric transport and fate, we are confident that measurement technology can support definitive conclusions. In the interim, FDEP and USEPA have substantially improved measurement technology, now allowing for responsive measurements on reasonable frequencies to be able to draw those relationships.

- (1) Continue the Speciated Atmospheric Mercury Super site at Coral Springs and science studies of the influence of continue to support atmospheric mercury studies relevant to the mercury control policy in U.S. southeast coastal regions,
- (2) Sponsor direct measurements of the transport of mercury species into Florida,
 - (3) Describe and quantify the atmospheric reactions of mercury that facilitate deposition, and
- 551 (4) Employ photochemical grid models to organize the atmospheric processes research into decision making.

The operation of two sites in the Speciated Atmospheric Mercury Study (SAMS) project by the Broward County Air Quality Division will change in this fiscal year, and one of the two sites there will be relocated to Everglades National Park where it will serve as a marine background site for the other sites to be emplaced in the coming years.

SAMS remains a key to this effort continuing to focus on the paramount importance of the speciation of mercury in the atmosphere in controlling the atmospheric fate of mercury. SAMS makes highly time-resolved measurements of all known forms of atmospheric mercury and associated tracer species. It is expected that this measurement and modeling project will continue through 2006. As a prelude to this 'Third-Generation Mercury Study', the U.S Environmental Protection Agency (USEPA) has established mercury 'super sites' in Ohio and Hawaii to assess and contrast the impacts of the emissions and transport among the handful of intensive mercury monitoring sites worldwide. This joint study by the USEPA and the FDEP envisioned for 2005 and 2006 will add monitoring sites at Everglades National Park (ENP or Park) and Tampa, Florida as part of a nascent, global network. Coordinated analyses among these sites will provide improved data, tools, and understanding in the effort to resolve the question of the importance of long-distance transport of mercury into Florida.

TMDL Program Support

By 2010 the Department will require specific information on atmospheric deposition for those impaired waters significantly influenced by atmospheric deposition (i.e., mercury, fixed nitrogen and, perhaps, phosphorus). We are beginning to develop plans for a statewide analysis of these substances which will require both a field and modeling component. We plan to organize this effort in the coming year and begin field measurements in 2007/08.

Mercury in Coastal Waters

Excessive concentrations of mercury have been found all of Florida's coastal waters, affecting many species of commercial or sport-fishing interest. Health advisories have been issued for several species in all Florida coastal and marine areas. To begin to develop a better understanding of the effective sources of mercury to marine fish, for the past two years the Mercury Program has applied for grant funding from the NOAA Office of Human Health Initiatives program, thus far to no avail. This proposed project would address the sources and influences that result in net-methylmercury formation in the coastal zone but federal funding has not been forthcoming. We intend to continue to seek support for this activity.

DRAFT 2B-25 9/9/2005

585

586

587

588 589

590

591

592

593

594

595

596

597 598

599

600

601

602

603

604

Dry Deposition Field Study

We anticipate receipt of a two-year EPA 'Regionally Applied Research' (RARE) grant from EPA Region 4 that will focus on the processes that govern the dry deposition of mercury from the atmosphere, a substantial but poorly quantified portion of the total mercury deposition load. Dry deposition studies in general have trailed other aspects of this science because of the minute concentrations and fluxes of mercury species to the earth's surface. Despite the subtlety of this form of deposition, gas and particulate dry deposition is occurs continuously, night and day, whereas rainfall at any point occurs for only a few hundred hours per year. Thus the net of dry deposition processes is thought to rival the rainfall load. FDEP and USEPA have sponsored two previous field studies of this phenomenon, but rapidly improving measurement technologies and modeling techniques should allow for higher resolution analyses since the Florida Everglades Dry Deposition Study of 2000/2001. The capabilities of sampling and analytical instrumentation and computing power have advanced rapidly over the past decade, allowing for more sensitive and specific techniques. This yields higher temporal resolution data which in turn can support more advanced modeling analyses. It was only a few years ago that 24-hour samples were the norm. today we can often obtain semi-continuous or continuous data and in some instances achieve data capture cycles of an hour or less.

In sum, we believe that the South Florida Mercury Science Program can continue to address the major multimedia aspects of the mercury cycle as it influences Florida. We expect to continue this work until the major scientific uncertainties had been substantially narrowed, and to provide applied information and analysis to support department programs.

CONCLUSIONS

- In 2003 and 2004, annual volume-weighted total mercury (THg) concentrations in rainfall were elevated as compared to previous years (monitoring commenced in 1994) at all three Everglades monitoring stations (e.g., stations at the Everglades Nutrient Removal Project, Florida Power and Light's Andytown substation, and the ENP's Baird Research Center). Accordingly, wet deposition (flux), which is a function of both concentration and rainfall, increased at two of the sites, and remained substantially greater than most other regions in the United States monitored by the Mercury Deposition Network.
- There remains a need to determine the relative importance of local, regional, and global atmospheric sources of mercury on mercury levels in fish in the Everglades, to evaluate options for Everglades mercury reductions.
- Mercury concentrations in largemouth bass in WCA-1, 2, and 3 while having declined by about 40 to 80 percent over the past decade, still remain relatively high (mean of means ca. 0.5 mg/kg) compared to the USEPA's recommended MeHg fish tissue criterion of 0.3 mg/kg.
- The declines in mercury concentrations in Everglades largemouth bass appear to have stabilized at most sites after 1998, and have increased substantially in fish in the Everglades National Park. Thus, in the absence of further reductions in larger-scale mercury emissions that impact South Florida, the mercury problem in this region will likely persist, albeit at a lower level than 10 to 15 years ago. unless alternative means for mitigating MeHg bioaccumulation in the food chain

605

606

607

608

609 610

611

612

613

614

615

616

617 618

619

620

621

622

623

624

625

626 627

9/9/2005 2B-26

- are elucidated and implemented. The most promising remaining means of managing MeHg in the Everglades may be by controlling sulfate loading.
 - Very high concentrations of mercury (1.2 1.6 mg/kg) in largemouth bass are evident in the Everglades National Park (ENP or Park), particularly in the Shark River Slough area at sites L67F1 and North Prong Creek. As well and as observed in previous years, for 2004 resident sunfish at site L67F1 had significantly greater mercury burdens than fishes from other Everglades sites. Mean concentration of THg in sunfish (*Lepomis* spp.) collected at L67F1 in 2004 was 0.44 mg/kg which is well above both the USFWS and USEPA predator protection criteria (See Appendix 2B-1). Because sunfish represent the preferred prey item of many fish-eating species in the Everglades, there is a need to elucidate the cause of elevated mercury levels in the Park.
 - Drying and rewetting cycles exacerbate the formation of methylmercury in both
 the Stormwater Treatment Areas and the Everglades. The Comprehensive
 Everglades Restoration Plan by reducing the frequency of drying and rewetting
 cycles may decrease MeHg production. Aquifer storage and recovery however by
 introducing high-sulfate connate seawater into the Everglades, may increase
 mercury methylation rate.
 - With the rerouting of water flow in the Everglades in recent years as a result of the STAs coming online and other hydrological alterations, it appears that the mercury hot spot has been relocated. Station 3A-15, the former mercury hot spot, now has low mercury levels, while mercury in fish in the in the Shark River Slough area of the Everglades National Park are high, possibly because sulfate concentrations are optimal for mercury methylation. Additional survey work is recommended to locate the new mercury hot spot(s) in the Everglades, and to verify the causes of elevated mercury.
 - The planned increase in water delivery from the Stormwater Treatment Areas to the Everglades National Park could widen the area of elevated mercury concentrations in fish in the Park if sulfate concentrations in this "new" water are elevated above Everglades background.
 - Too little notice has been taken to date of Everglades sulfur biogeochemistry other than as regards mercury methylation. Sulfur as a biologically very active element has forms that are highly toxic (sulfide), and others (sulfate) which will promote eutrophication of the Everglades via liberation of phosphorus from organic material in sediments. If Everglades restoration is to be achieved, there is a need to investigate further the effects of sulfur pollution from the Everglades Agricultural Area on the Everglades ecosystem, and to address this issue.

DRAFT 2B-27 9/9/2005

LITERATURE CITED

- Atkeson, T.D., C.D. Pollman and D.M. Axelrad. 2005. Recent trends in Hg emissions, deposition,
 and biota in the_Florida Everglades: a monitoring and modeling analysis. In: Dynamics of
 Mercury Pollution on Regional and Global Scales: Atmospheric Processes, Human Exposure
 Around the World, N. Pirrone and K. Mahaffey (Editors), Springer Publisher, Norwell, MA,
 USA. Chaptern 26, pp. 637-656.
- Bates, A.L., W.H. Orem, J.W. Harvey and E.C. Spiker. 2002. Tracing Sources of Sulfur in the Florida Everglades. *J. of Environ. Qual.*, 31: 287-299.
- Eisler, R. 1987. Mercury Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S.
 Fish and Wildlife Service Biological Report, 85(1.10). Guentzel, J.L., W.M. Landing, G.A.
 Gill and C.D. Pollman. 1995. Atmospheric Deposition of Mercury in Florida: The FAMS
 Project (1992–1994). Water, Air, and Soil Pollution, 35: 393-402.
- Guentzel, J.L., W.M. Landing, G.A. Gill and C.D. Pollman. 2001. Processes Influencing Rainfall
 Deposition of Mercury in Florida. *Environ. Sci. Technol.*, 35: 863-873.
- 681 Gilmour, C.C., E.A. Henry, and R. Mitchell. 1992. Sulfate stimulation of mercury methylation in 682 freshwater sediments. Environ. Sci. Technol. 26: 2287-2294. 683
- 684 Gilmour, C.C., G.S. Riedel, M.C. Ederington, J.T. Bell, J.M. Benoit, G.A. Gill, and M.C.
 685 Stordal. 1998. Methylmercury concentrations and production rates across a trophic gradient in the northern Everglades. Biogeochemistry, 40: 327-345.
- Lamers, L.M., H.M. Tomassen and J.M. Roelofs. 1998. Sulfate-Induced Eutrophication and Phytotoxicity in Freshwater Wetlands. Environ. Sci. Technol.32, 199-205
- Lange, T.R., D.E.. Richard and B. Sargent. 2005. Annual Fish Mercury Monitoring Report, August 2005. Long-Term Monitoring of Mercury in Largemouth bass from The Everglades and Peninsular Florida. Florida Fish and Wildlife Conservation Commission, Eustis, FL.
- 692 Orem, W.H., H.E. Lerch and P. Rawlik. 1997. Geochemistry of Surface and Pore Water at USGS
 693 Coring Sites in Wetlands of South Florida: 1994 and 1995. U.S. Geological Survey Open694 File Report 97-454, pp. 36-39.
- 695 Orem W.H., A.L. Bates, H.E. Lerch, C.W. Holmes, J.W. Harvey, M. Corum, M.Chrisinger, M. Marot, and S. Kleckner. In Press.. Sulfur Geochemistry of the Everglades.
- 697 Pollman, C.D., G.A. Gill, W.M. Landing, J.L. Guentzel, D.A. Bare, D. Porcella, E. Zillioux and G. T. Atkeson. 1995. Overview of the Florida Atmospheric Mercury Study (FAMS). *Water, Air, and Soil Pollution*, 80: 285-290.
- SFWMD. 1999. 1999 Everglades Interim Report. South Florida Water Management District,
 West Palm Beach, FL. http://www.sfwmd.gov/org/ema/everglades/previous.html
- SFWMD. 2000. 2000 Everglades Consolidated Report. South Florida Water Management District, West Palm Beach, FL. http://www.sfwmd.gov/org/ema/everglades/previous.html
- SFWMD. 2001. 2001 Everglades Consolidated Report. South Florida Water Management District, West Palm Beach, FL. http://www.sfwmd.gov/org/ema/everglades/previous.html

9/9/2005 2B-28 DRAFT

- SFWMD. 2002. 2002 Everglades Consolidated Report. South Florida Water Management District, West Palm Beach, FL. http://www.sfwmd.gov/org/ema/everglades/previous.html
- 708 SFWMD. 2003. 2003 Everglades Consolidated Report. South Florida Water Management 709 District, West Palm Beach, FL. http://www.sfwmd.gov/org/ema/everglades/previous.html
- 710 SFWMD. 2004. 2004 Everglades Consolidated Report. South Florida Water Management 711 District, West Palm Beach, FL. http://www.sfwmd.gov/org/ema/everglades/previous.html
- 5712 SFWMD. 2005. 2005 South Florida Environmental Report. South Florida Water Management District, West Palm Beach, FL. http://www.sfwmd.gov/org/ema/everglades/previous.html
- Slemr, F., E. Brunke, R. Ebinghaus, C. Temme, J. Munthe, I. Wängberg, W. Schroeder, A.
 Steffen and T. Berg. 2003. Worldwide Trend of Atmospheric Mercury since 1977.
 Geophysical Research Letters, 30 (10): 1516.
- 717 USEPA. 1976. Quality Criteria for Water. PB263-943
 718 http://www.epa.gov/waterscience/criteria/redbook.pdf
- 719 USEPA. 1986. Quality Criteria for Water. EPA 440/5-86-001 720 <u>http://www.epa.gov/waterscience/criteria/goldbook.pdf</u>
- USEPA. 1997. Mercury Study Report to Congress. Volume 1: Executive Summary Report.
 Office of Air Quality Planning and Standards and Office of Research and Development, U.S.
 Environmental Protection Agency. Washington, D.C. EPA-42/R- 97-003.
- 724 USEPA. 2004. National Recommended Water Quality Criteria.
 725 http://www.epa.gov/waterscience/criteria/nrwqc-2004.pdf
- USGS. 2004. Impacts of Sulfate Contamination on the Florida Everglades Ecosystem. Fact Sheet
 FS 109–03. http://pubs.usgs.gov/fs/fs109-03/fs109-03.pdf
- Wang, F. and P.M. Chapman. 1999. BIOLOGICAL IMPLICATIONS OF SULFIDE IN
 SEDIMENT—A REVIEW FOCUSING ON SEDIMENT TOXICITY. Environmental
 Toxicology and Chemistry: No. 18, pp. 2526–2532.

DRAFT 2B-29 9/9/2005